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Abstract-This paper outlines a combined theoretical and numerical study of the mass transfer effected by 
high Rayleigh number Bknard convection in a two-dimensional saturated porous layer heated from below. 
The focus of this study is on the Darcy flow, heat transfer and mass transfer scales of a single cell (roll) 
that exists in the steady two-dimensional convection regime. The numerical solutions are based on the 
complete governing equations for two-dimensional flow, and cover the Rayleigh number range 5G2000. 
The numerical results compare favorably with the theoretical conclusions of a scale analysis that is based 
on the recognition of (i) two temperature difference scales in the cell, (ii) a flow field without horizontal 
boundary layers, and (iii) thermal top and bottom end-regions that are not slender enough to be boundary 
layers. Writing Le for the Lewis number, the overall mass transfer rate or Sherwood number is shown to 
scale as Le”ZRa7!8 if Le > Ra”“, as Le2Ra”Z if Ru-“~ < Le < Ra’j4, and as O(1) if Le < Ru-“~. 
The transition from the Darcy flow to the inertia-dominated Forschheimer flow and the scales of the 

Forschheimer regime are discussed in the closing section. 

1. INTRODUCTION 

THE SUBJECT of Bttnard convection in a horizontal 
porous layer has received considerable attention over 
the past four decades because of its relevance to geo- 
physical fluid dynamics, geothermal reservoir engin- 
eering and thermal insulation design. Reviews of the 
contemporary advances in this domain have been pre- 
sented by Cheng [l, 21, Nield [3], McKibbin [4] and 
Bejan [5]. A related phenomenon that has received 
much less attention is the combined heat and mass 
transfer driven by both temperature and con- 
centration differences across the porous layer. The 
study of this phenomenon began with Nield’s [6] semi- 
nal paper on the onset of convection in a layer where 
the buoyancy effect is due to temperature and con- 
centration gradients, and continued with more recent 
analytical studies of the near-critical convection 
regime [7-111. In this paper we consider an aspect 
that so far has not been discussed, namely, the high 
Rayleigh number regime characterized by heat and 
mass transfer processes that are strongly dominated 
by convection. 

The present study consists of numerical experi- 
ments and a complete scale analysis of the flow, tem- 
perature and concentration fields in a two-dimen- 
sional porous medium where the buoyancy effect is 
due entirely to temperature gradients. Our primary 
objective is to determine the mass transfer potential 
of the heat-transfer-driven flow. However, since the 

flow field forms independently of the concentration 
field, we use this opportunity to re-examine from a 
purely theoretical standpoint the scaling trends of 
two-dimensional convection driven by heating from 
below, and to propose an alternative to the scaling 
theories advanced by Elder [12], Palm et al. [13], 
Robinson and O’Sullivan [14] and Bejan [15]. 

2. PHYSICAL MODEL AND PROBLEM 

STATEMENT 

The system selected for analysis is the two-dimen- 
sional region occupied by the fluid-saturated porous 
medium shown in Fig. 1. The fluid is subjected to a 
destabilizing vertical temperature gradient by main- 
taining top and bottom boundaries at different tem- 
peratures, T, and 7,, such that T, > T, in cases where 
the fluid has the property to expand upon heating at 
constant pressure (/3 > 0). The ensuing flow is driven 
solely by the buoyancy effect associated with tem- 
perature gradients. Transported by this flow is a non- 
reacting chemical species the concentration C of which 
is maintained at different levels (C,, C,) along the two 
horizontal boundaries of the porous layer. The focus 
of the numerical experiments and scale analysis of this 
study is on the relationship between the temperature 
field, which drives the flow, and the concentration 
field that results from the interaction between the flow 
and the imposed concentration difference (C, - CJ. 
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NOMENCLATURE 

b Forschheimer’s constant, equation (50) U, u horizontal and vertical velocity 
C specific heat of solid components 

CP specific heat at constant pressure %Y horizontal and vertical Cartesian 
C concentration coordinates. 
AC overall concentration difference 

AC, core concentration difference, measured Greek symbols 
horizontally thermal diffusivity 

D mass diffusivity “p coefficient of volumetric thermal 
Da Darcy number, K/H 2 expansion 

9 gravitational acceleration f& thickness of thermal end region 
H height 6, thickness of vertical mass stream 
K permeability 6, thickness of horizontal flow along the 
L horizontal dimension of flow domain end wall 
Le Lewis number, cc/D 6” thickness of vertical plume 
n number of rolls (cells) p viscosity 
NU overall Nusselt number, equation (18) V kinematic viscosity 
P pressure P density 
Pr Prandtl number, v/u heat capacity ratio 

Pr, effective Prandtl number, Pr, Da iJ porosity 

Pr , porous medium Prandtl number, II/ stream function. 
equation (53) 

Ra Rayleigh number, equation (12) Other symbols 
Sh overall Sherwood number, equation (19) average 
t time I ? fluid phase 
T temperature maximum 
AT overall temperature difference solid phase 

AT, core temperature difference, measured dimensionless variables, equations (9t 
horizontally (11). 

01 - I 
T =, I ’ 0 x L ,?T+$?Z+,E= ?- 3 ? (3) 

FIG. 1. Schematic of two-dimensional porous layer heated 
from below and subjected to a concentration difference in 

the vertical direction. 

The flow model consists of the usual incompressible 
flow assumption coupled with the Boussinesq 
approximation whereby the density variations are 
neglected everywhere except in the buoyancy term of 
the momentum equation. The porous medium 
is modeled as homogeneous and isotropic, and the 
volume-averaged flow through the pores is assumed 
to be slow enough so that it obeys Darcy’s law (in 
other words, the local Reynolds number based on 
pore diameter and volume-averaged velocity is of 
O(1) or less). Local thermal equilibrium is assumed 
between the solid and liquid phases of the medium. 

(PC), 
0 = dJ+u -b)(pcp)r 

Q, the porosity, and (PC)~ and (PC~)~ the specific heat 
capacities of solid matrix and fluid mixture, respec- 
tively. The rest of the symbols are defined in Fig. 
1. According to the same model, the equation that 
accounts for the conservation of constituent can be 
written as [ 151 

According to the above model, the conservation where C is the concentration (expressed as kilograms 
equations for mass, momentum and energy in two- of constituent per unit volume of porous medium). 
dimensional flow are [l, 21 The coefficient D is the mass diffusivity of the con- 

a1 UX OY \UX- QY-/ 

where K is the Darcy-flow permeability of the 
medium. Parameter 0 is the heat capacity ratio 
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stituent through the solution-saturated porous 
medium, D = 4d, where d is the mass diffusivity 
through the solution alone. 

Although the object of this study is the steady-state 
heat and mass transfer across the horizontal layer, the 
time derivative terms are retained in equations (3) and 
(5) in order to produce time-dependent solutions that 
tend to a steady state : this added feature allows us to 
investigate the oscillatory flows that persist in those 
cases where steady-state solutions do not exist. In 
dimensionless form the governing equations read 

(6) 

(7) 

4 aC a$ aC a$ aC 
;x+&F&-jT3= j&v26 (8) 

where Le = u/D and where (-) indicates the new 
dimensionless variables 

T-T, . 
f=- 

c-c, 

T, -To’ c= c,-co (10) 

1 ctRa 

t=HZat. 
(11) 

The streamfunction $ is defined in the usual way, 
u = a$/ay, v = -8$/8x, and the Darcy modified Ray- 
leigh number is based on the temperature difference 
and the vertical dimension 

Ra = QBV, -TOW 
uv . (12) 

The dimensionless form of the boundary conditions 
sketched in Fig. 1 is 

$=O, F=O, C=O at?=1 (13) 

$=O, f=l, e=l atj=O. (14) 

The domain of the numerical analysis is a rectangular 
region of horizontal length L. The boundary con- 
ditions invoked along the vertical sides are those of 
impermeability, zero heat transfer and zero mass 
transfer (see, e.g. Blake et al. [16]) 

^ ^ 

$=O, g=O, $=O atP=O,L/H. (15) 

3. NUMERICAL METHOD 

Numerical solutions were developed for the tran- 
sient problem in which a temperature difference is 
imposed suddenly across the porous medium. The 
governing equations were discretized based on the 
control volume formulation described by Patankar 
[17]. The power law scheme was used in order to 

evaluate the heat flux and the mass flux across the 
boundaries of each control volume. The time deriva- 
tives were discretized in accordance with the fully 

implicit scheme. 
The initial condition consisted of setting $ = 0 and 

f = 0 throughout the domain, and the flow was 
initiated by changing the bottom wall temperature to 
Y? = 1. The 5, F and e fields that form after a time 
interval Ai were sought based on the point-by-point 
iterative method: this method was used repeatedly 
until the changes in 4, ?and c between two successive 
iterations satisfied the convergence criterion 

where (i,j) are the grid numbers and I is the number 
of iterations. The solution obtained in this manner 
was used as the initial guess in the search for the 
solution that prevails at the end of the next time inter- 
val. The evolution in time of the flow, temperature 
and concentration fields was documented in terms of 
solutions at discrete time intervals Ai. Special numeri- 
cal accuracy tests indicated that the size of the time 
interval Ai has no effect on the flow, heat and mass 

transfer solution that prevails at a certain time i. 
The convergence to a final steady-state solution 

was decided by comparing the overall heat and mass 
transfer rates evaluated along the top and bottom 
boundaries. In all the steady-state solutions discussed 
in the present study the absolute value of the error 
parameter 

Err = (NW w, = I - UN w, = 0 

(Nu, St), = , + (Nu, Sh), = 0 

(17) 

was less than 1%. The overall Nusselt and Sherwood 
numbers are both defined with reference to the respec- 
tive pure diffusion rates 

(18) 

Jo \‘-‘Y/~=o.I 

The two-dimensional domain of Fig. 1 was covered 
with an array of (m - 2) x (p - 2) square control volumes. 
The four boundaries were represented by control vol- 
umes of zero thickness. The effect of grid spacing or 
number of control volumes is illustrated in Table 1, 
where m and p represent the total number of control 
volumes in the vertical and horizontal directions, 
respectively. As expected, the numerical accuracy and 
the time needed for convergence increase as the num- 
ber of control volumes increases. A satisfactory trade- 
off between accuracy and computation cost was 
achieved by always placing 20 control volumes in 
the direction that corresponds to the shorter of the 
two sides of the domain (i.e. m = 20 if H/L < 1, and 
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Table 1. The sensitivity of the numerical solution to the 
fineness of the grid (Ra = 200, H/L = 2, Le = 1) 

Grid fineness 

mxp Nu, Sh Number of CPUs 

22x 12 4.08 131 
30x 16 4.06 412 
38x20 4.04 1022 
46x24 4.04 2321 

p = 20 if H/L > 1 ; Table 2). The number of control 
volumes along the longer side of the domain was 
chosen such that (m - 2)/(p - 2) always equalled the 
geometric aspect ratio H/L. 

Underrelaxation was used in order to accelerate the 
convergence of the solution. Values of the relaxation 
parameter were 0.7 for the $ and ? fields, and the 
range 0.8-l for the d field in the case of large Lewis 
numbers (i.e. relatively thin concentration boundary 
layers). In many cases the H x L domain was narrow 
enough to house a unicellular flow: given the rough 
symmetry of the single cell about the vertical mid- 
plane, the bottom-to-top, horizontal ends-to-middle 
marching scheme presented a better convergence per- 
formance relative to the traditional left-corner-up- 
and-right scheme. 

4. RESULTS 

There are two sides to the combined heat and mass 
transfer phenomenon addressed in this study, a classi- 
cal part, which is relatively well understood, and a 
newer part that served as the chief motivation for this 
work. The classical aspect concerns the Benard-type 
flow driven by heating from below in a shallow porous 
layer. It has been established that in the steady-state 
convective regime that exists at Rayleigh numbers 
immediately above critical, the flow consists of cells 
(rolls) the number and slenderness of which depend 
on the Rayleigh number. The cells become more slen- 
der and multiply as the Rayleigh number increases. 
Even in numerical studies conducted in two-dimen- 
sional domains of finite horizontal extent, the cells 
exhibit a ‘natural’ horizontal length scale that-if 
shorter than L-governs the process of discrete mul- 
tiplication of the cells as Ra increases. 

It is also known that the thermal convection pattern 
exhibits a transition from steady to time-dependent 
(simply-periodic) flow as the Rayleigh number 
increases above approximately 400. The transition 
and the unsteady state were first documented exper- 
imentally by Combarnous and LeFur [18], Cal- 
tagirone et al. [19] and Combarnous and Bories [20], 
and via numerical simulations by Horne and O’Sul- 
livan [21] and Caltagirone [22]. A very recent numeri- 
cal study of two-dimensional time-dependent con- 
vection in a square porous domain concluded that 
the transition to simply-periodic convection occurs at 
Ra N 390 [23]. For this reason, the two-dimensional 

Table 2. Numerical results showing the effect of Rayleigh 
number and geometric aspect ratio on the overall heat and 

mass transfer rates (IL = 1) 
_ 

Ra mxp HIL Nu, Sh n 

1.60 
1.33 
1.17 
1.08 
1 .oo 
0.93 
0.86 

3.00 
2.00 
1.67 
1.44 
1.35 
1.25 
1.21 
1.11 
1.00 
0.83 
0.69 

50 34x22 1 .oo 1 
26x20 1.26 1 
23 x 20 1.37 1 
28 x 26 1.40 1 
22x22 1.42 1 
28 x 30 1.40 1 
21x24 1.37 1 

100 48x20 1.02 1 
38x20 2.09 1 
32x20 2.46 1 
28x20 2.62 1 
29x22 2.65 1 
21 x 22 2.68 1 
36 x 30 1.53 2 
22x20 1.76 2 
22x22 2.09 2 
22x26 2.46 2 
20x28 2.64 2 

200 65x20 2.25 1 
56x20 3.10 1 
41 x 20 3.79 1 
42x20 3.96 1 
40x20 4.02 1 
38x20 4.04 1 
36 x 20 4.05 1 
34x22 2.71 2 
17x32 4.09 4 

400 42x20 3.27 1 
14x22 5.95 1 
59x20 6.23 1 
56x20 6.26 1 
53x20 6.26 1 
42 x 20 4.36 2 
38x20 5.40 2 

1000 146 x 20 5.86 1 
128 x 20 8.69 1 
119x20 9.62 1 
110x20 10.41 1 
107x20 10.62 1 
102x20 10.84 1 

11.08 1 
11.01 1 

13.34 1 
15.37 1 
16.54 1 
16.82 1 
16.91 1 

3.50 
3.00 
2.50 
2.22 
2.11 
2.00 
1.89 
1.60 
0.50 

5.00 
3.60 
3.17 
3.00 
2.83 
2.22 
2.00 

92x20 
83x20 

8.00 
7.00 
6.50 
6.00 
5.83 
5.56 
5.00 
4.50 

2000 182x20 
164x20 
146 x 20 
137x20 
128 x 20 

10.00 
9.00 
8.00 
7.50 
7.00 

steady-state solutions developed in the present study 
refer physically to the convection regime that occurs 
at Rayleigh numbers lower than 400, that is, in the 
Ra/Ra, range l-10, where Ra, is the critical Rayleigh 
number (4n’). However, we determined two-dimen- 
sional steady-state solutions for Rayleigh numbers as 
high as 2000, by executing the numerical calculations 
in sufficiently narrow and tall domains that house only 
one cell (steady-state solutions persist in the Ra range 
40&2000 due to the flow-straightening effect played 
by the slender vertical region, H/L >> 1). We did this in 
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Table 3. The effect of the Lewis number on the overall mass 
transfer rate (the numbers listed in this table represent the 
values of Sh ; the corresponding Nu values are listed in line 

with LX = 1) 

Ra, (H/L) 

(& 
100 

(Z, 
400 1000 

Le (1.25) (3.00) (5.83) 

0.02 1.01 
0.04 1.04 
0.1 1.09 1.16 1.24 
0.2 1.02 1.15 1.32 1.58 1.87 
0.4 1.08 1.50 2.01 2.19 3.87 
1 1.42 2.68 4.06 6.26 10.62 
2 2.12 4.04 6.17 9.83 18.32 
4 3.19 5.84 8.93 14.47 27.84 

10 5.19 9.55 14.71 24.03 46.29 
20 1.49 13.73 21.52 32.76 
40 10.62 18.50 30.11 

100 14.71 

order to determine with greater accuracy the Rayleigh 
number dependence of the various flow, heat transfer 
and mass transfer scales that are revealed by the solu- 
tions. This higher degree of accuracy is needed in 
order to see the ‘trends’ and test the results of the 
scale analysis of Section 5, which is based on a two- 
dimensional steady-state cellular flow model (Fig. 9). 

An additional incentive for extending the cal- 
culations to Ra = 2000 was the wish to verify Robin- 
son and O’Sullivan’s [14] numerical results for the 
same range, which were based directly on the steady- 
state version of the governing equations. It is worth 
noting that the physical occurrence of the two-dimen- 
sional flow structure described in this and other 
numerical studies [13, 141 has been demonstrated in 
Hele-Shaw cell experiments by Elder [ 121. 

The numerical experiments described in this 
paper are not intended to suggest in any way that at 
such high Ra values the actual flow in an unbounded 
horizontal layer is steady and two-dimensional. 

The present numerical solutions fall into two cate- 
gories, experiments designed to verify the dependence 
of cell slenderness on Rayleigh number, Table 2, and 
experiments designed to document the effect of Ray- 
leigh and Lewis numbers on the overall Sherwood 
number, Table 3. In the first set of experiments, the 
Rayleigh number was assigned a value in the range 
5&2000 and, with Ra fixed, the aspect ratio H/L was 
decreased from one run to the next. Physically, a 
sequence of such experiments would take place in a 
layer with fixed height (H) and bottom-top tem- 
perature difference (T, - T,), where the horizontal 
dimension of the medium (L) increases steadily. As 
the H x L domain is widened, the flow progresses 
towards the convective regime and, consequently, the 
overall Nusselt number and the cell flow rate increase. 

The relationship between Nu and L/H at constant 
Ra is shown in Fig. 2. One interesting aspect of this 
relation is the maximum approached by Nu as the 

domain becomes increasingly wider: beyond this 
maximum the number of cells doubles suddenly and 
the overall Nusselt number drops sharply. In Fig. 2 
this effect is illustrated only for Ra = 100, however, it 
is found at other Rayleigh numbers as well (Table 2). 
Furthermore, the cell doubling phenomenon repeats 
itself as the domain becomes wider, as shown by 
the Ra = 200 runs summarized in Table 2. 

It is worth noting that the first continuous portion 
of the Nu-H/L curve in Fig. 2 (i.e. the single-cell 
portion) agrees very well with the data published earl- 
ier by Caltagirone [22]. In particular, the aspect ratio 
that corresponds to the maximum Nu in single-cell 
flow is practically the same as in Caltagirone’s study. 
One difference that we found is that the flow 
approaches a steady state over the second continuous 
portion of the Nu-H/L curve (after cell doubling), in 
other words, contrary to Caltagirone’s conclusions, 
the present long-time solutions were not characterized 
by persistent fluctuations. Relevant to this com- 
parison is the fact that the numerical solutions con- 
verged smoothly for all the values of Ra as long as 
the number of cells remained constant. However, the 

solution behaved differently in the case of the critical 
L/H values associated with cell doubling: in Fig. 2 
this range corresponds to the gap between the smooth 
portions of the Nu-L/H curve. In these narrow 
domains the numerical solution did not converge, in 
fact, even the transient solution was accurate only 
during a short time interval immediately after i= 0. 

The developing streamline pattern showed that the 
solution becomes unstable as it fluctuates between the 
original flow and one with twice as many cells. The 
original flow resides in the upper portion of the porous 
medium, while the splitting of the cells takes place in 
the lower portion. On either side of the narrow cell- 
doubling range of L/H values the transient solution 
proceeded smoothly and stably towards an unam- 
biguous (unique, reproducible) steady state : two 
examples of this smooth evolution are given in Fig. 3. 

The overall Nusselt number results of Table 2 are 

presented in Fig. 4 as a plot of Nu vs H/(L/n), where 
n is the number of cells observed in each steady-state 
solution. The use of the cell geometric aspect ratio 
H/(L/n) on the abscissa is intentional : its purpose is 
to show that the Nusselt number depends primarily 
on the geometry of the constituent cells, in other 
words, that the shift from Fig. 2 to Fig. 4 allows all 
the Nu data for a single Ra to fall practically on a 
single curve. 

A representative set of streamlines, isotherms and 
constant concentration lines is presented in Figs. 5(ak 
(d). The case is one where the overall Nusselt number 
has reached a maximum as H/L decreased at constant 
Ra (Table 2), in other words, the counterclockwise 
single-cell pattern of Fig. 5(a) illustrates the natural 
height/thickness ratio that corresponds to Ra = 200. 
The isotherms of Fig. 5(b) show that the top and 
bottom ends of the cell are characterized by intense 
vertical temperature gradients. Furthermore, the ver- 
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FIG 2. The effect of the geometric aspect ratio (L/H) on the overall Nusselt number (Nu) while holding 
the Rayleigh number fixed (Ra = 100). 

Ra - 1000 

FIG. 3. The smooth evolution of the heat transfer solution to a steady state, and the Ra effect on the 
duration of the time-dependent solution. 

tical segments of the circulation loop are two slender 
plumes : note that although the plumes are insulated 
along their outer boundaries, they do exchange heat 
all along their height, which is of order H (the obser- 
vation that the two plumes function like a long coun- 
terfiow heat exchanger is essential to being able to 
predict analytically the scales of the flow, temperature 
and concentration fields (Section 5)). 

Figure 5(b) is also a plot of the constant con- 
centration lines that are calculated when Le = 1. 
Examined together with Figs. .5(c) and (d), these 
plots show how the top and bottom concentration 
boundary layers become thinner as the Lewis number 
assumes progressively larger values. At the same time 
we note that the thickness of the concentration plumes 
that line the vertical sides of the cell decreases, i.e. that 

the direct mass transfer between the two branches of 
the vertical counterflow diminishes. At Le = 20, for 
example, the ‘core’ of the cell is practically in a state 
of uniform concentration. 

The effect of the Lewis number on the overall Sher- 
wood number is documented through the solutions 
summarized in Table 3. These solutions are for (Ra, 
H/L) pairs that yield maximum or near-maximum 
Nusselt numbers in the manner illustrated in Fig. 4. 
The Sherwood numbers assembled in Table 3 increase 
with both Ra and Le: Fig. 6 shows that in the high 
Lewis number limit the Sherwood number increases 
as Le”*, and that in the vicinity of Le - 1 the Sh(Le) 

curve is considerably steeper. To explain these trends 
theoretically is the preliminary objective of the scale 
analysis presented in the next section. 
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171 0 0 
2000 - 0 

Nu 

10 - 

n 

0 1 1 v 2 

0 4 

0 

Ra = 1000 
0 0 

0 
0 
0 

400 
0% 

0 

V 

200 

-0 

100 
0 

%a V 
0 

0 
0 

FIG. 4. The dependence of the overall Nusselt number on the Rayleigh number and the height/thickness 
ratio of an individual cell, H/(L/n). 

5. SCALE ANALYSIS 

The scaling trends exhibited by two-dimensional 
cellular convection in a porous layer heated from 
below have attracted considerable attention. Table 4 
outlines a summary of the main results of the scale 
analyses that have been proposed so far in connection 
with the flow/heat transfer part of the phenomenon 
addressed in this paper. The scales of the mass transfer 
part of the phenomenon are intimately related to those 
addressed by the studies mentioned in Table 4: for 
this reason, an understanding of mass transfer trends 
requires first an understanding of the flow and heat 
transfer scales. 

5.1. Flow and heat transfer 
The scaling results of Elder [12], Palm et al. [13], 

Robinson and O’Sullivan [14] and Bejan [ 151 are listed 
chronologically in Table 4 in order to highlight the 

lack of agreement that continues to divide the theor- 
etical domain of the field. Elder’s analysis focused 
only on the thermal boundary layers that line the 
top and bottom walls of each cell. Bejan’s analysis is 
essentially the same as Elder’s, and is presented as one 
example in a case-by-case coverage of the subject of 
convection based on scale analysis. Palm et al.‘s analy- 
sis includes a study of the scales of the slender core 
region between the top and bottom walls. The main 
difference between Palm et al’s predictions and those 
of the other theories is the ability to anticipate the 
Nu - Ra”’ scaling law for heat transfer : as shown by 
the present results (Fig. 7), a scaling law Nu - Rap in 
which P < 1 would fit the data more closely than 
Nu - Ra. 

Worthy of special mention is Robinson and O’Sul- 
livan’s [14] study, in which analyses of both horizontal 
and vertical boundary layer regions are combined 
with the empirical adoption of Nu - Ra”’ and 
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a b C d 

FIG. 5. Numerical solution for Ra = 200 and H/L = 1.89 : (a) streamlines, $,,, = 0.0313, GrnI,, = 0, 
At+6 = 0.004; (b) isotherms, also constant-concentration lines for Le = 1 ; (c) lines ofconstant concentration 

for Le = 4 ; (d) lines of constant concentration for Le = 20. 

Sh - 

10- 

Ra 
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0 400 
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v 
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0 

FIG. 6. The Lewis number effect on the overall Sherwood number. 

H/L N Ra*” as the correct scaling trends that prevail 
in the Rayleigh number range 100-2000. These scaling 
laws were obtained by curve-fitting the numerical Nu 
and H/L data yielded by Nusselt number max- 
imization experiments similar to the ones conducted 
in the present study (Fig. 4). Because of their reliance 
on empirical information, the Robinson and O’Sul- 
livan method goes a long way towards expressing 
correctly all the flow and heat transfer scales of the 
phenomenon. 

Obviously, the problem of anticipating these scales 
from a purely theoretical point of view is still open to 
discussion. We used the present experiments and the 
ultimate objective of discovering the scaling-correct 
correlation for mass transfer results, as an oppor- 
tunity to shed new light on the scales of the flow and 

heat transfer problem. Stimulated by Robinson and 
O’Sullivan [14] and conversations with Professor 
O’Sullivan [24] we examined closely the Rayleigh 
number dependence of certain quantities that can be 
calculated along the periphery of each H x L cell at 
the stage where the overall Nu reaches its maximum. 
The results of these calculations are listed in Table 5, 
where &,,r is the horizontal velocity averaged along 
the top (or bottom) horizontal wall, ti,,r is the vertical 
velocity averaged along the left (or right) vertical 
boundary, and AfC is the temperature difference mea- 
sured in the horizontal direction between the two ver- 
tical boundaries of the cell [f(L/H, 9) - f(O, $)I and 
averaged from 9 = 0 to 1. 

Recalling that the Rayleigh number was used in the 
nondimensionalization of the flow field, equation (9), 
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Table 4. Summary of scale analyses of the flow and heat transfer in a two-dimensional porous medium 
heated from below 

2349 

Study NU NIL W/H) u/(x/H) 

Elder [12] 
Palm et al. [13] 
Robinson and O’Sullivan [14] 
Bejan [15] 
Present results, 

equations (38) and (39) 

Ra 
Ra”’ 
(Ra”‘), 
Ra 
Ra”’ 

Ra”* 
(Ra”‘)* 
Ra”’ 
Ra”* 

Ra 
Ra 
RaS16 
Ra 
Ra3j4 

Ra’ 
Ra”l Ra’ 

Ra”2 
Ra’14 Ra” 

Ra- 116 

Ra- 114 

( )* = sealing law suggested by an empirical correlation of numerical data. 

I- 

t 0 

0 

FIG. 7. The effect of Rayleigh number on the overall Nusselt 
number and the vertical velocity scale. 

the complete effect of Ra on the horizontal and vel- 
ocity scales is brought to light by plotting not z&s and 

tj.vs, but 

_4f_ N Ra I’?,,~ 
@lH 

^ 
_&ICI”“” V 

UlH LIH 
or 

V 

_ N Ra fiavs. 
al H 

(21) 

(22) 

The dimensionless vertical velocity scale v/(a/H) 
shown in Fig. 7 was calculated with equation (21) 
based on the s,,,., and H/L data gathered in Table 5. 

o*tt 103 
Ra 

FIG. 8. The effect of Rayleigh number on the horizontal 
velocity scale (top graph), thermal end region thickness 
(middle graph) and side-to-side temperature difference 

(bottom graph). 

The horizontal velocity scale u/(a/H) was calculated 
from equation (20) and Table 5 and plotted as the 
first graph of Fig. 8. The trends revealed by the data 
of Figs. 7 and 8 are discussed later in this section. 

The first step in the scale analysis of the cellular 
Bow is the identification of certain flow regions that 
possess certain properties (e.g. slenderness) that dis- 

Table 5. Peripheral and overall flow and heat transfer quantities in a single cell that 
maximizes Nu 

50 1.00 (1.42) 0.0396 0.0814 0.0791 0.326 0.486 
100 1.25 (2.68) 0.0471 0.0916 0.132 0.453 0.514 
200 1.89 (4.05) 0.0313 0.0524 0.148 0.405 0.597 
400 2.83 (6.26) 0.0189 0.0297 0.142 0.354 0.636 

1000 5.00 (11.08) 0.00912 0.0141 0.131 0.299 0.647 
2000 7.5 (16.82) 0.00531 0.0081 0.118 0.263 0.656 



2350 0. V. TREVISAN and A. BEJAN 

L t 

FIG. 9. The structure of the H x L cell that maximizes Nu 
when Ra is fixed: left, flow; middle, temperature; right, 

concentration (Le > Ra1j4). 

tinguish them from the remaining regions. Consider 
the H x L domain sketched in Fig. 9, and recall that 
it is ‘tall’ especially at large Rayleigh numbers (Table 
5). The top and bottom walls come in contact with 
thermal end regions of length L and thermal thickness 
a,,, where 6, is assumed much smaller than H (i.e. 
NU >> 1). In a flow region that is sandwiched between 
the two L x 6, end regions, we recognize the presence 
of the vertical plume counterflow discussed already in 
connection with Fig. 5. 

One crucial question to consider at this stage is 
whether the thickness of each vertical plume is of 
order L or it has a different scale 6,, where 6,, < L. If 
the plume thickness scales as L, then the ‘core’ region 
of the cell is filled entirely by the plume counterflow 
(this is the case sketched in Fig. 9). If, on the other 
hand, the plume thickness scale 6, is smaller than L, 
then the counterflowing plumes trap between them a 
relatively stagnant region the horizontal length scale 
of which is L. The assumed 6, scale is calculated from 
Table 5 by first writing 

which yields 

(23) 

The H/6, values are shown in Fig. 10 next to the 
H/L ratios that resulted from the Nu maximization 
experiments. The assumed 6, scale is consistently half 
the size of L in the Ra range 50-2000, in other words, 
the core is filled completely by the plume counterIIow. 
The comparison presented in Fig. 10 is another indi- 
cation that the L dimension of the cell that maximizes 
the overall heat transfer rate is a ‘natural’ length scale 
of the flow : the cell chooses a thickness L that leaves 
room only for the vertical plume counterBow that is 
exchanged by the two end regions. 

Another important observation is that the cellular 
flow possesses two temperature difference scales, the 
bottom-top difference AT = T, - TO, and the differ- 
ence measured in the horizontal direction (the differ- 
ence across the counterhow) AT,, where AT, < AT. 

We consider first the vertical counte~ow region, 
the vertical and horizontal dimensions of which are 

a 

0 A H/L 
- 0 d 

Ib 
1 ‘L’“” 

102 103 
Ra 

FIG. 10. The Ra dependence of H/L and H/S,, showing that 
the vertical plume thickness 6, scales as L. 

of order H and L, and assume that this region is 
slender, H >> L. The momentum equation (2) requires 
the following equivalence of scales : 

-N--, 

L VL (25) 

The energy equation (3) requires 

AT-AT, ATc 

u-NuF H 

meaning that the heat transfer in the horizontal direc- 
tion (between the counterRowing plumes) is balanced 
by the enthalpy picked up or released by each stream 
as it travels a distance H. 

From the mass conservation equation (1) we derive 
an equation for the horizontal entrainment velocity 
scale u 

I.4 v 
-w- 

L H 
(27) 

Equation (27) implies that the vertical plume flow rate 
OL turns and proceeds horizontally as a counterflow 
of velocity u and cross-section H. In other words, the 
velocity thickness of the horizontal fIow is of order H 
(H/2, more accurately), and even along the top and 
bottom walls the horizontal velocity scale is dictated 
by the entrainment/detrainment exchange between the 
vertical plumes. This type of horizontal velocity scal- 
ing rules out the existence of distinct velocity bound- 
ary layer regions along the top and bottom walls of 
the porous medium. Note that the same type of hori- 
zontal velocity distribution (i.e. one that is spread 
over the entire height H) is present in Weber’s [25] 
solution for the boundary layer regime in a rec- 
tangular porous medium heated from the side. 

Although the (u, a) circulation fills the entire H x L 
region, a fraction of the vL flow rate turns around 
through the thermal end regions of size L x ah. The 
thermal end regions constitute the energy link between 
the heat transferred through the horizontal boundaries 
(y = 0, H) and the enthalpy carried vertically by the 
plume counterflow. In each thermal end region the 
heat transfer problem is one of ‘forced convection’, in 
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the sense that the flow that sweeps the horizontal wall than 2/3. This experimental trend is supported by 

(the u scale) is dictated by the requirement of mass Robinson and O’Sullivan’s semi-empirical analysis, 

conservation in the H x L region. If we assume that which yielded an Ra ‘I6 dependence for v/(u/H). 

the thermal end region is slender Good agreement is also found between the pre- 

6, << L 

then the energy equation (3) requires 

(28) 
dicted Ra”* for H/L and the numerical trend pre- 
sented in Fig. 10. This prediction agrees also with the 
results of two previous analyses (Table 4). 

The Ra”’ scaling predicted for the overall Nusselt 
number underestimates the steepness of the numerical 
Nu line in Fig. 7, which would be fitted better by 
Palm et al.‘s Nu - Ra u2 or Robinson and O’Sullivan’s 
Nu - Ra*“. This particular discrepancy stimulated 
the improved analysis that concludes with equations 
(38) later in this section. 

ah ML - ‘I2 -4 . L u (29) 

The scale analysis that was omitted between equations 
(28) and (29) is the same as the analysis presented on 
page 357 in Bejan [15]. Finally, the balance between 
the wall heat transfer to the end region (LLAT/&) 
and the enthalpy current associated with the vertical 
plumes (puLc~T,) requires 

a?- AT,. (30) 
h 

Equations (25k(27), (29) and (30) are sufficient for 
determining the five unknown scales of the flow/heat 
transfer problem (u, v, L, 6,,, AT,). If we neglect AT, 
on the left-hand side of equation (26) i.e. if we assume 

AT >> AT, 

then we obtain the following scales : 

(31) 

L 

E - Ra-“2 (32) 

48 
z - Ra- “’ 

AT Ram”‘. c- 

The Nusselt number is of the order of H/6,, therefore 
an additional result of the analysis is 

Nu - Ra’l’. (33) 

We assess the merits of this theory by noting first 
that the Ra’l’ dependence of the horizontal velocity 
scale is supported by the numerical data plotted in the 
top graph of Fig. 8. Furthermore, the predicted Rali6 
scaling represents a definite improvement over Robin- 
son and O’Sullivan’s semi-empirical Ra”’ trend, 
Table 4. Also interesting is the fact that Robinson and 
O’Sullivan’s Ra*” scaling agrees well with their own 
numerical calculations of wall horizontal velocity 
(those calculations were made at one point along the 
wall, x = L/2, i.e. unlike the present &values, which 
are averaged over the entire length of the wall). 

Next the Ra213 dependence predicted for the ver- 
tical velocity comes close to the trend exhibited by the 
data in Fig. 7, although the data fall on a power-law 
curve -Rap, the exponent p of which is slightly greater 

Finally, we record the Ram ‘j3 dependence predicted 
for the side-to-side temperature difference AFC. This 
is the first instance in which the downward trend exhi- 
bited by the AfC data in Fig. 8 is anticipated on a 
purely theoretical basis. The numerical AfC values, 
however, decrease less rapidly than Ra- ‘I3 as Ra 
increases. 

The contribution of the preceding theory is that it 
accounts at least qualitatively for all the scaling trends 
revealed by numerical experiments. The quantitative 
mismatch between theory and experiments with 
regard to the Ra dependence of Nu and AfC invites 
another look at the basic assumptions of the theory. 
To begin with, the decrease of AFC with increasing Ra 
validates the use of equation (31) as an assumption 
that applies in the high Rayleigh number limit. 

Second, the assumption that the fluid inventory of 
the plume counterllow returns as a horizontal coun- 
terflow of transversal length scale H must be tested 
against numerical experiments. Let 6, be the trans- 
versal length scale of the horizontal flow, where 6, is 
not necessarily of order H. We determine the 6, scale 
by first writing 

+J VJ,,X 
% - 3 - 6,lH (34) 

and then using Table 5 to evaluate 

s,_& 

H &,g ’ 
(35) 

The results of this calculation are listed in the last 
column of Table 5, and show that in the Ra range of 
this study 6, is consistently of order H. This validates 
the assumption discussed immediately after equation 

(27). 
Third, the scaling results (32) imply that the slen- 

derness ratio of the thermal end regions must vary as 

(36) 

The prediction that L/6, is a weak function of Ra is 
supported by the data plotted in Fig. 8, however, 
equation (36) and the data cast doubt on the assump- 
tion that the thermal end region is slender, equation 
(28). The slenderness ratio appears to be of the order 
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of 2 (i.e. not much greater than one), suggesting that 
the thermal end region is not a ‘boundary layer 
region’. In this case the effect of longitudinal diffusion 
(aAZ’/L’) is no longer negligible relative to transversal 
diffusion (NAT/~;) on the right-hand side of the 
energy equation (3). Consequently, as a way of 
improving the theory that yielded equations (32), in 
place of the convection scaling Law (29), we use the 
diffusion balance aAT/L’ - ~AT~~~, which yields 

6,! - L. (37) 

Equations (25)-(27), (30) and (37) are the five scal- 
ing laws of the modified theory in which the thermal 
end region is not assumed to be of the boundary layer 
type. The scaling results of this alternative theory are 

with the additional result for overall Nusselt number 

Nu - Ra’12. (39) 

Comparing equation (38) with the first theory, equa- 
tions (32), and with the data plotted in Figs. 7, 8 and 
10, we find that the latest theory anticipates very well 
all the trends exhibited by the numerical results. The 
scaling laws (38) are entered at the bottom of Table 
4, as our contribution to the twenty year old debate. 

The relative success of the present contribution, 
equations (38) and (39), is due to three decisions that 
are absent in most if not all the preceding theories, 
namely, 

(i) the recognition of two temperature difference 
scales, AT and AT, ; 

(ii) the assumption of a flow field without hori- 
zontal boundary layers ; 

(iii) the ~sumption of thermal end regions that are 
not slender enough to be boundary layers. 

The preliminary version of this theory, equations (32), 
is based only on assumptions (i) and (ii) and predicts 
qualitatively all the observed trends. Assumption (iii) 
has the effect of fine-tuning the eventual solution, 
equations (38). 

6, < L. (40) 

In this case the two vertical mass streams do not come 
in direct contact, since they are separated by an L- 
thick core of average concentration AC/Z. The vertical 
counterflow of the two mass streams carries con- 
vectively a constituent mass flow rate of the order of 
vS,AC. The diffusion-referenced Sherwood number is 
then 

v&AC 
Sh - ____ 

DLAC/H 

where the v and L scales are given by equations (38). 
The problem reduces to finding the mass stream thick- 
ness 6,. 

Assuming that the mass stream is slender, 6, << H, 
the constituent conservation equation (5) expresses a 
balance between lateral mass diffusion (DAC/s,f,) and 
the amount of constituent absorbed by the clean fluid 
entrained by the mass stream (u,AC/S,). The entrain- 
ment velocity scale u, is a scale of the H x 6, region ; 
mass conservation in the H x6,,, region requires 
u,/6, - v/H or via equation (27), u,/6, - u/L. The 
constituent conservation scaling law required by 
equation (5) is therefore 

u D 
---T 
L 6, 

(42) 

which, combined with equations (38) and (41), trans- 
lates into 

&I - HLe- l/2 &- xi8 (43) 

Sh - b’i2 Ra”‘. (44) 

These results are valid as long as 6, < L, i.e. when 

Le > Ra’j4. (45) 

If the Lewis number is less than Ruti the mass 
stream thickness is of the order of L, and the two mass 
streams engage in mass exchange over their entire 
height H. The concentration of each stream varies 
withy, as the mass lost by one stream is gained by the 
other. The mass flow rate of the constituent via the 
vertical counterflow is now vLAC,, where the new 
scale AC, is the concentration difference measured in 
the horizontal direction (AC, is analogous to the AT, 
scale used in the analysis of the ilow part of the prob- 
lem). The stream-to-stream concentration difference 
AC, is obtained by invoking equation (5) in the H x L 
region. The balance between stream-to-stream mass 
diffusion and longitudinal mass gain 

5.2. Mass transfer 

The scaling properties of the overall mass transfer 
yields the AC, scale. Relying again on the flow and 

rate can be discussed now with reference to the last 
heat transfer scales (38), we conclude that in this 

drawing of Fig. 9. Let 6, be the thickness of the mass 
second regime the Sherwood number must scale diff- 

stream that rides along the centerline of each vertical 
erently 

plume, and assume first that Sh - Le2 Raliz. (47) 
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Le 

IO - 
eq. 44 

_..-- __-- 
__-- 

_*-- 
__-- _*-* 

__*- eq. 47 
__--- 

-1 I I I 

1 -s__ 
--__ 100 

: 

Ra/Rac 
--__ --.._ --__ --__ --__ -_ 

0.1 Sh - 1 

FIG. 11. The Ra-Le domain and the four mass transfer regimes possible in two-dimensional convection 
driven by heat transfer (Ra, is the critical Rayleigh number, 4~‘). 

By intersecting equations (44) and (47) we confirm 
that equation (47) applies when Le is less than Ra’j4, 
i.e. when equation (45) fails. The Sherwood number 
of equation (47) decreases rapidly as Le decreases, 
however, this trend must end when the mass diffusi~ty 
has become so large that the overall mass transfer 
rate is dictated by diffusion (Sh N 1). In this way we 
conclude that equation (47) holds in the Le range 

Ra- ‘I4 < Le -=z Ra’14 (48) 

and that Sh is of the order of one in the limit of 
extremely low Lewis numbers, Le < Ra- ‘!4. 

Figure 11 summarizes the mass transfer regimes 
that are possible in two-dimensional natural con- 
vection driven by heating from below in a porous 
medium. The Ra-Le field is divided by equation (48) 
and Ra N Racritical into four domains: proceeding 
clockwise, the four mass transfer regimes can be 
termed ‘no flow’ (Sh = l), ‘high Le’ (equation (44)) 
‘intermediate Le’ (equation (47)) and ‘low Le’ 

(Sh = 1). 
The numerical data of Table 3 support the Sher- 

wood number scales determined above very well. Earl- 
ier in this paper we saw that at high Lewis numbers 
the Sherwood number increases as Le”*, Fig. 6. The 
Ra dependence of the Sherwood number in the high 
Le limit is similar to the Ra”’ proportionality antici- 
pated in equation (44) : e.g. the S’h (Le = 10) values 
of Table 3 increase as Ra’.“. 

The intermediate Lewis number regime, equation 
(47) explains finally the steeper slope that develops in 
the Sh(Le) curve in the vicinity of Le N 1. The slope 
becomes increasingly steeper as Ra increases, i.e. as 
the flow travels deeper into the wedge-shaped inter- 
mediate Le domain of Fig. 11. The Sh(Le) curve at 
high (constant) Ra has three distinct portions: note 
that the width of the inner portion (the intermediate 
Le regime) increases as Ra increases, in accordance 
with criterion (48). 

6. CONCLUDING REMARKS: THE 

TRANSITION FROM DARCY FLOW TO 

FORSCHHEIMER FLOW 

The objective of this study was to determine the 
mass transfer characteristics of two-dimensional 
Benard convection through a Imid saturated porous 
medium. The scale analysis of the single-cell flow and 
the numerical results obtained in the Ra range Xl- 
2000 suggest that the overall mass transfer rate obeys 
three distinct scaling laws, namely 

&‘h N Le”ZRa7’8 , when Le > Ra’j4 (@a) 

Sh N Le2 Ra ‘I’, when Ra-‘14 < Le < Ralt4 (49b) 

Sh N O(l), when Le < Ra- ‘14. (49c) 

The high-Le and low-Le behavior (the first and third 
scaling laws above) is supported conclusively by the 
overall mass transfer results yielded by numerical 
experiments. The data obtained in the intermediate 
Lewis number range Ra- ‘I4 -c Le < Ra’14 shows that 
the Lewis number exponent 1 in the Sh N Le’Ra’ 
relation increases steadily as Rca increases. Whether 
the I exponent becomes eventually equal to 2 could, 
conceivably, be determined by extending the present 
series of experiments to Rayleigh numbers higher than 
2000. 

The most important conclusion of this study is that 
the Sh(Le, Ra) dependence separates into three dis- 
tinct regimes. From an engineering standpoint, this 
means that numerical Sherwood number results such 
as those of Fig. 6 cannot be correlated in the usual 
fashion, i.e. by simply intersecting the two extreme 
asymptotes (49a) and (49~). 

One limitation of the work described here is the 
assumption that the Darcy flow prevails throughout 
the ‘high Rayleigh number’ range that was considered. 
Under special circumstances that are presented below, 
it is possible that above a certain Rayleigh number 
the velocity is sufficiently large to cause the breakdown 
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of the Darcy flow model. The model that captures the 
transition from Darcy flow to a flow where the fluid 
inertia is important is the so-called Darcy-Forsch- 
heimer model [5], according to which the vectorial 
momentum equation reads 

v + F,“,V = ++PP). (50) 

The Darcy-flow momentum equation that was used 
throughout this study, equation (2) corresponds to 
setting b = 0 on the left-hand side of equation (50). 
At sufficiently high values of ]v( the second term domi- 
nates the left-hand side of equation (50) : we shall refer 
to this flow regime as the Forschheimer flow regime. 

The scales of Benard convection heat transfer in the 
Forschheimer regime were studied recently by Bejan 
[5, 26, 271. The same regime had been documented 
numerically by Georgiadis and Catton [28] and, exper- 
imentally, by Jonsson and Catton [29]. The Geor- 
giadis and Catton work is based on the even more 
genera1 Darcy-Forschheimer-Brinkman model in 
which in addition to the Darcy flow resistance and the 
fluid inertia one accounts also for the no-slip con- 
dition along the solid wall of the enclosure. Using a 
scale analysis analogous to the one that for the Darcy 
regime yielded Nu - Ra [ 151 (see also Table 4), Bejan 
showed that above a certain Rayleigh number (i.e. in 
the Forschheimer regime) 

Ra > Pr, (51) 

the Nusselt number increases less steeply with the 
Rayleigh number 

Nu - (Ra Pr,) ‘j2. (52) 

The new group is the ‘porous medium Prandtl num- 
ber’ [5,26, 271 defined as 

H 
Pr, = PrbK 

where Pr = v/u. In conclusion, the Darcy-flow con- 
clusions hold if the order of magnitude of Ra does not 
exceed that of Pr,. 

The present scaling results for the Darcy-flow 
regime, equations (38) and (39), are based on a BCnard 
cell model that is more sophisticated than in the early 
analysis of ref. [15] (review assumptions (ik(iii) in 
Section 5). In particular, it is assumed that the cell has 

two temperature scales, AT and AT,. Repeating the 
scale analysis that led to equations (38) and assuming 
this time ‘Forschheimer flow’ instead of Darcy flow, 
we obtain instead of equations (25), (26) (37) and 
(30) in order 

AT, vL2 
_NP 
AT uH 

(55) 

6, - L (56) 

AT, ci 
_N-. 
AT VL (57) 

These equations can readily be solved for 6, to prove 
that the Nusselt number scaling law for the Forsch- 
heimer regime is 

Nu -F - (RaPr,)‘j3. 
h 

This scaling law replaces the Darcy-flow law (39) as 
Ra increases, therefore the transition from Darcy flow 
to Forschheimer flow occurs when 

Ra > Prp’. (59) 

In conclusion, the flow, heat and mass transfer 
scales reported between equations (38) and (49) are 
valid if the order of Ra does not exceed the order of 
magnitude of Pri. Note finally that contrary to state- 
ments made in refs. [26, 271 the porous medium 
Prandtl number Pr, is not the same as Jonsson and 
Catton’s [29] effective Prandtl number Pr,. The 
relation between the two is Pr, = Pr,/Da, where 
Da = K/H=. 

The numerical part of this study can also be 
extended, e.g. by using equation (50) instead of equa- 
tion (2). An even more effective step would be to 
include also the Brinkman term as done by Georgiadis 
and Catton [28]. Another worthwhile extension would 
be to relax the ‘tall enclosure’ assumption, which for 
most of this study constrained the flow to the single- 
cell geometry. Relevant to the work of using a wider 
L/H domain for each flow regime is a recent study 
communicated by Prasad and Kulacki [30]. 
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TRANSFERT DE MASSE PAR CONVECTION THERMIQUE A GRAND NOMBRE DE 
RAYLEIGH DANS UN MILIEU POREUX CHAUFFE PAR LE BAS 

RCsum&On etudie a la fois theoriquement et numeriquement le transfert de masse par convection de 
Benard a grand nombre de Rayleigh dans une couche poreuse saturee bidimensionnelle chauffee par le 
bas. On s’interesse particulierement a l’ecoulement de Darcy, aux echelles des transferts de chaleur et de 
masse de la cellule unique (rouleau) qui existe dans le regime de convection permanente bidimensionnelle. 
Les solutions numeriques sont baies sur les equations completes et couvrent le domaine 5&2000 du 
nombre de Rayleigh. Les resultats numeriques s’accordent avec les conclusions theoriques dune analyse 
scalaire basee sur (i) deux echelles de temperature dans la cellule, (ii) un champ d’ecoulement sans couches 
limites horizontales, et (iii) des regions terminales thermiques a la base et au sommet qui ne sont pas 
suffisamment minces pour etre des couches limites. En designant par Le le nombre de Lewis, le flux de 
transfert de masse ou le nombre de Sherwood est a l’tchelle de Leli2 Ra718 si Le > Ra”4, de Le* Ra”’ si 
Ram ‘I4 < Le < Ra’14, et de O(1) si Le < Ra-‘j4. La transition entre l’ecoulement de Darcy et l’ecoulement 

de Forscheimer domine par l’inertie est discutee ensuite avec les echelles du regime de Forschheimer. 
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STOFFTRANSPORT DURCH NATtiRLICHE KONVEKTION BE1 HOHEN RAYLEIGH- 
ZAHLEN IN EINER VON UNTEN BEHEIZTEN POR&EN SCHICHT 

Zusammenfassung-Der folgende Beitrag beschreibt eine theoretische und numerische Untersuchung des 
Stofftransports durch Btnard-Konvektion bei hohen Rayleigh-Zahlen in einer zweidimensionalen geslt- 
tigten pordsen Schicht, die von unten beheizt wird. In dieser Untersuchung wird in erster Linie die 
Darcy-Striimung, der Wlrme- und der Stofftransport in einer Roll-Zelle untersucht, welche sich bei der 
zweidimensionalen stationlren Konvektion bildet. Die numerischen Losungen werden aus dem vollstln- 
digen Gleichungssystem fiir zweidimensionale Striimungen gewonnen und gelten fur Rayleigh-Zahlen von 
50 bis 2000. Die numerischen Ergebnisse stimmen sehr gut mit den theoretischen Ergebnissen einer 
Ahnlichkeitsbetrachtung iiberein, die auf folgenden Annahmen beruht : (i) Es gibt zwei Magstabe fur die 
Temperaturdifferenz in der Zclle, (ii) das Stromungsfeld hat keine waagerechten Grenzschichten und (iii) 
die thermischen Endbereiche oben und unten sind nicht dick genug, urn Grenzschichten zu sein. Der 
Gesamt-Stofftibergang bzw. die Sherwood-Zahl hangen von folgenden Ausdriicken ab: Le”2Ra7’8 fiir 
Le > Ra’j4, Le’Ra”’ fur Ra- lu4 < Le < Ra “4 ; Sh ist von der Grogenordnung 0( 1) fur Le < Ra- I”‘. Der 
tibergang von der Darcy-Striimung zu der von Massentrlgheit bestimmten Forschheimer-Stromung und 

die Ahnlichkeitsfunktionen dieses Bereichs werden im letzten Abschnitt diskutiert. 

MACCOI-IEPEHOC B HAFPEBAEMOR CHH3Y I-IOPMCTOI? CPEAE IIPH 6OJIbIIIMX 
rIMCJIAX P3JIER 

AtmoTamu--IlposeneHo TeopeTurecKoe H wcnewoe nccnenonamie MacconepeHoca B pembwe KoHneK- 
UHH 6eHapa llpH 6onbmHx WCnaXhJleK B HarpeBaeMOMCHHJy AByMepHOM tIOpHCTOMCnOe.~HOBHOe 

nHmdaHwe yAemeTcn Tesemim AapcH B MaCUITa6aM Tenno MacconepeHoCa B eAHHmHo8 mekxe 

(BliXpe),XapaKTepHOii AJISI yCTaHOBHBlllerOCff AByMepHOrO KOHBeKTHBHOrO peXC&iMa. %iCneHHbIe EiCCne- 

AOBaHWI OCHOBaHbI Ha BCIIOJIb30BaHHH LlOnHbIX Oll~AeJIlW_WlHX ypaBHeHH% AJlR AByMepHOrO ITOTOKa B 

nriana30rie n3Menenmr qricna P3nen OT 50 no 2000. %icneHHue pe3ynbTaTbl xopomo cornacymT0-i c 

BbIBOAaMH TeO~TWECKOrO aHaJIA3a, KOTOpblir yYHTbIBaeT (1)ABa MacluTa6a pa3HOCTW TeMIIepaTyp B 

FiefiKe, (2) IIOne TeYeHH5I 6e3 rOpH30HTiUbHbIX IIOrpaHHqHbIX CnOeB H (3) TelLUOBbIe BepXHIOIO A 
HEKHlOIO KOHUeBbIe o6nacTa,KOTOpbxe Henb311 paCCMaTpHBaTb KaK IlOrpaHWiHbIeCnOH 1(3-38 6onbmoro 

nonepeworo pa3hfepa.OBo3HasnB qncno JIbmica vepes Le,cyMMapHyiocKopocTbMacconepeHoca mm 
4HCnO mepByAa MOXHO ITpeACTaBHTb KaK: h?"* Ra”* npn Le > Ra’14, Le’ Ra”’ arm 
Ra-1’4 < Le < RcI”~ w O(l), ecna Le < Ra-‘I“. B 3aKnIO'IHTenbHOM pa3Aene jlaCCMaTpHBalOTC5I 

nepexoA OT Teqewin Hapcu K TeqeHmo @opmxaBwepa, B ~0~0p0hi npeo6naAamT cmm HHepuee, a 


